If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2+2=0
a = 1; b = 3; c = +2;
Δ = b2-4ac
Δ = 32-4·1·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-1}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+1}{2*1}=\frac{-2}{2} =-1 $
| 6x-2-2x=-2+4x | | 11/15x+8=180 | | 11/15x+8=152 | | 30+0.80x=14+1.20x | | 6x-2+2x=-2+4x+0 | | x^{3}-49x=0x3−49x=0 | | 2x(x-2)=3x-4 | | 2+3x=-17/x=5 | | 2+3x=-17/x=5 | | 2+–9c=–43 | | 2+9c=–43 | | 2=h/4−3 | | 23=10n | | 23=10n | | 2x^2-41.2x+799.36=0 | | 2x^2-41.2x+799.36=0 | | 3+–7k=87 | | y+7)=(2y+98) | | 3.25+x.55=2.50+x.60 | | 11=z/4–9 | | 3.25+x.55=2.50+.60 | | .5=1/x | | 7x-41+5x-12+2x=9=180 | | 4(3x-9)+2x=146 | | 2x^2-41.2x=50 | | F(x)=x^2+12x-27 | | 3(6+3x)=(1)/(27) | | 3(6+3x)=(1)/(27) | | (6x+15)+41+64=180 | | 7/4x+1/4x=69 | | (3x-9)+90+60=180 | | 200=11b+2 |